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Abstract

We construct the space of super light rays for aD = 10,N = 1 superconformal structure. A super
Ward correspondence is then established betweenD = 10,N = 1 supersymmetric Yang–Mills
field equations on 10-dimensional spaces of the formM4 × M6 (whereM4 is a four-dimensional
complex space–time andM6 is six-dimensional complex Minkowski space) and superbundles over
the space of super light rays which are trivial on normal embedded quadrics. This result reduces in
four dimensions to the equivalence of connections satisfying theD = 4,N = 4 SSYM field equa-
tions and superconnections integrable along super light rays also satisfying an added geometrical
constraint coming from dimensional reduction. This extends the work of Witten and of Harnad and
Shnider done on flat Minkowski space.
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1. D = 10, N = 1 superconformal structures

A superconformal structure on a 10|16-dimensional supermanifold,M10|16, is defined by
the existence of 0|16-dimensional distribution,T1M such that the Frobenius form satisfies

[sA, sB ]/T1M = Γ cABec

for some basissA of T1M andec of T0M = TM/T1M and where theΓ cAB are the 10-dimen-
sional gamma matrices.

Locally, we may write a basis ofT1M in the form

qA = ∂

∂θA
+XbA

∂

∂xb
,
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where(xa, θA) are super coordinates onM. Our definition requires the existence of iso-
morphismsgBA andhab such that

[gCAqC, g
D
B qD] = Γ cABh

b
c

∂

∂xb
mod T1M.

2. The space of super light rays

Letηab denote the constant diagonal tensor, i.e. what the metric is for complex Minkowski
space. To construct the space of super light rays for our 10|16-dimensional superconformal
structure, we consider

Σ = {vc ∈ T ∗
0M|ηabhcavch

d
bvd = 0},

and the presymplectic form

d(ξaω
a)= dξa ∧ ωa + ξa dθA ∧ dXaA = dξa ∧ ωa − ξa dθA ∧ ωb∂bXaA

− ξa dθA ∧ dθB(1
2(qAX

a
B + qBXaA)),

whereωa = dxa + dθA XaA and dθA form a moving frame which is dual to the frame
∂/∂xa andqA. The kernel of the presymplectic form restricted toΣ is spanned by the set
QA,Da = [QB,QC ]ΓaBC, where

QA = ξahacΓ cABgCB

(
qC − ξd∂bXdC

∂

∂ξb

)
.

Note that this kernel has dimension 1|8 since the rank ofhbaξbΓ
aAB is 8.

This kernel is tangent toΣ since

QA(ηabhcaξch
d
bξd)= 2ξeh

e
dΓ

dABgCB (η
ab(qChca)ξch

d
bξd − ξf ∂cXfCηabhcah

d
bξd)

= 2ξeh
e
dΓ

dABηab(gCB (qCh
c
a − (∂f XcC)hfa )hdbξcξd

= 2ζdΓ
dABηabT cBah

−1e
c ζbζe,

whereζa = hbaξb.
QA(ηabhcaξch

d
bξd)= 2ζdΓ

dABηabΓaBEt
cEh−1e

c ζbζe

= 2(Γ dABΓ bBE + Γ bABΓ dBE)t
cEh−1e

c ζeζbζd

= 2ηbdδAEt
eEζeζbζd = 2teAζeη

bdζbζd = 0,

and where we have used the fact thatT cBa = {gDB qD, hda∂d}c = ΓaBEt
cE. This can be shown

using the Bianchi identity[1]:

Γ aABT
b
Ca + Γ aCAT

b
Ba + Γ aBCT

b
Aa = 0,

where

Γ aABT
b
Ca = Γ aAB[gDC qD, h

b
a∂b] = [gDC qD, [g

E
AqE, g

F
B qF ]] = [qC, [qA,qB ]]



8 A. McHugh / Journal of Geometry and Physics 46 (2003) 6–20

for qC = gDC qD. Thus,

T bAc = − 1
16Γ

BC
c (Γ aCAT

b
Ba + Γ aABT

b
Ca) = −1

8Γ
a
CA(Γ

BC
c T bBa)

= −1
8(−ΓcCAΓ

aBCT bBa + 2δac T
b
Aa),

where we have usedΓ BC
c Γ aBC = 16δac and

Γ aABΓ bBC + Γ bABΓ aBC = 2ηabδAC .

Thus,

8T bAC = ΓcCAΓ
aBCT bBa − 2T bAc,

andT bAc = (1/10)ΓcCAt
Cb.

Let F be the leaf space of this distribution. (It is integrable since it is the kernel of a
closed 2-form.) As in[3], there is aC∗-action onΣ given by scalar multiplication:

mt : (xa, θA, ξb) �→ (xa, θA, tξb).

We havem∗
t φ = tφ, so forv ∈ kerφ,

φ m∗
t v = m∗

t φ  v = tφ  v = 0,

where represents contraction.mt∗ is clearly injective somt∗ kerφ = kerφ and leaves are
taken onto leaves bymt . We define the space of super light rays,N , asN = F/C∗. It also
appears that we may perhaps go and define a supercontact structure onN as in[3,6], but
we shall not do so here.

3. The embedding of d = 4, N = 4 superconformal structures

Let us first recall the definition of a superconformal structure on a 4|4N -dimensional
supermanifold[6]. It is defined by the existence of supervector bundlesS

2|0
+ , S2|0

− ,E0|N and
the exact sequence

0 → TlM ⊕ TrM → TM → TM0 → 0,

where we have isomorphisms

TlM ∼= S+ ⊗ E, TrM ∼= S− ⊗ E∗, T0M ∼= S+ ⊗ S−.

TlM andTrM are required to be integrable distributions and the Frobenius form

Φ : TlM ⊗ TrM → T0M,

where

Φ(X ⊗ Y ) = [X, Y ] mod (TlM ⊕ TrM)
is required to coincide via the above isomorphism with the convolution:

S+ ⊗ E ⊗ E∗ ⊗ S− → S+ ⊗ S−.
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The Frobenius form is then said to be nondegenerate. (This definition is a simple gener-
alization of theN = 1 case given in[5] which is based on the work of Ogievetskii and
Sokachev[8].)

LetM4 be a geodesically convex space–time.M4 has a canonicalN = 4 superconformal
extension,M4|16 [6]. We wish to embedM4|16as a factor of ad = 10,N = 1 superconformal
structure. To do so we will need the following claim.

Claim. Let M4|16 be the canonical superconformal extension of a space–time,M4. The

isomorphismsgβjαi : TlM → S+ ⊗ E andgkβ̇α̇l : TrM → S− ⊗ E∗ used in the definition
of the superconformal structure onM4|16, may each be taken to be the identity (see also
[7]).

With this claim, it is straightforward to embedM4|16 into ad = 10,N = 1 superconformal
structure. LetΛ = M4 × M6, whereM6 is six-dimensional Minkowski space, and define
T1Λ

10|16 as the span of

∂αi +Xāαi∂ā + εαβθβk∂kl,

and

∂
j
α̇ +Xājα̇ ∂ā + ε jklmεα̇β̇θ

β̇
k ∂lm,

where∂αi +Xāαi∂ā spanTlΛ10|16 and∂jα̇ +Xājα̇ ∂ā spanTrΛ10|16.
To prove the claim, recall the double fibration

of reduced manifolds, and thatM4|4N is defined as

(M4,O(∧•((a0
∗(O(1,0)

⊕N ⊕O(0,1)⊕N))∗)
= (M4,O(∧•((a0

∗(O(1,0)))
∗⊕N ⊕ (a0

∗(O(0,1)))
∗⊕N)

= (M4,O(∧•(S∗⊕N
+ ⊕ S∗⊕N

− ))) = (M4,O(∧•(S∗
+ ⊗ E∗ + S∗

− ⊗ E)).

This identification is also compatible with the requirement that the Frobenius form be just
the contraction,

S+ ⊗ E ⊗ S− ⊗ E∗ → S+ ⊗ S−.

To see this letθαi = sα ⊗ ei andθ α̇j = sα̇ ⊗ ej and letqαi, q
j
α̇ be dual to dθαi , dθ α̇j . Recall
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the exact sequence

0→H 0(Q× U,O(1,0)⊗ T )⊕H 0(Q× U,O(0,1)⊗ T ∗)
→H 0(Q× U,N)→ H 0(Q× U,L)→ 0,

whereQ = P1 × P1 andU is an open coordinate patch inM.
Hence, we also have the exact sequence,

0 → (H 0(L))∗ → (H 0(N))∗ → (H 0(O(1,0)⊗ T ))∗ ⊕ (H 0(O(0,1)⊗ T ∗))∗ → 0.

Now [qαi, q
j
α̇ ]/T1M = a∗[X + TQ, Y + TQ]/T1M, whereX, Y ∈ Γ (Q× U,N) with

0 → TQ → b∗TN→ N → 0.

Thus [X+ TQ, Y + TQ] = b∗ dθ(X+ TQ, Y + TQ) = b∗ dθ(X, Y ), whereθ is the contact
structure onN and we have applied the fact that contraction of dθ with an odd component
of the normal bundle and a section ofTQ is 0 and that contraction of dθ with a section of
TQ and a section ofTQ is 0.

From the construction given in[6], we see thatθ can be given as

θ = dq0 + pa dqa + φj dψj ,

and thus

dθ = dpa ∧ dqa + dφj ∧ dψj .

The important thing to note is thatφj andψj are local sections ofO(−1,0) ⊗ T and
O(0,−1)⊗ T ∗ which locally can be written asφj = s− ⊗ ej andψj = s+ ⊗ ej and that
if restricted to a normal embedded quadric,Q, and its odd normal bundleO(1,0)⊗ T ∗ ⊕
O(0,1)⊗ T , the map

dθ |Q : (O(1,0)⊗ T ∗)⊗ (O(0,1)⊗ T )→ O(1,1)

is just contraction ofT andT ∗. Thus on global sections

H 0(Q× U,O(1,0)⊗ T )⊕H 0(Q× U,O(0,1)⊗ T ∗)→ H 0(Q× U,L),

we have

dθ(sα ⊗ ei, sα̇ ⊗ ej ) = δji sα ⊗ sα̇,

and hence

[qαi, q
j
α̇ ]/T1M = δji hββ̇αα̇ ∂ββ̇/T1M.

Thus, our odd coordinates are such thatg
βj
αi andgkβ̇α̇l are just the identity.
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4. Integrability along super light rays and the field equations

Following [2,9], it is straightforward to show the equivalence of the field equations for
the d = 10,N = 1 supersymmetric Yang–Mills theory and integrability of connections
along the super light rays. We will thus have the following result:

LetΛ = M4 × M6. There is then a one-to-one correspondence between solutions to the
field equations ford = 10,N = 1 supersymmetric Yang–Mills theory and connections
which are integrable along super light rays.

We first show that a connection integrable along super light rays satisfies the superfield
equations.

We repeat virtually verbatim the argument of Harnad and Shnider[2] as a matter of
completeness:

For a connection given by

QA = qA + ωA, Da = hba∂b + ωa,
integrability along super light rays, i.e. being able to solve for covariantly constant sections
along super light rays,

ξaDaσ = 0, ξaΓ AB
a QBσ = 0

is determined by the constraint equation

[QA,QB ] = Γ aABDa. (1)

DefineψB = (1/10)Γ aAB[Da,QA] andFab = [Da,Db]. Also define

ΣabA
B = 1

2(Γ
aACΓ bCB − Γ bACΓ aCB).

It follows from the constraint equation and the Bianchi identities that the convariant deriva-
tive operatorQA acts as follows onDa , the Bosonic part of the connection,ψB andFab,
respectively:

[QA,Da ] = −ΓaABψ
B, (2)

QAψ
B = 1

2Σ
abB
A Fab, (3)

QAFab = ΓaABDbψ
B − ΓbABDaψ

B. (4)

These relations are all derived by Witten[9]. They follow in an elementary way from the
definitions with the help of a number of identities satisfied by the 10-dimensionalΓ -matrices
which are listed here:

Γ aAB = Γ aBA, Γ aAB = Γ aBA, Γ aABΓ bBC + Γ bABΓ aBC = 2ηabδAC,

Γ aABΓaCD + Γ aACΓaBD + Γ aADΓaBC = 0, Γ aABΓ
AC
a = 10δCB , Γ aABΓ

AB
b = 16δab ,

ΣabA
B ΓbAC = −9Γ aBC, ΣabA

B Γ BC
b = +9Γ aAC,

Γ cABΣ
abB
C + Γ cBCΣ

abB
A = −2ηcbΓ aAC + 2ηcaΓ bAC,

ΣabA
B Γ cBC +ΣabC

B Γ cBA = 2ηbcΓ aAC − 2ηacΓ bAC,

Γ aCBΓaADΓ
bEDΓbFB = −4Γ aCEΓaFA + 12δCF δ

E
A + 8δCAδ

E
F .
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The equation,QAψB = (1/2)ΣabB
A Fab, can be derived using the fact thatQAψB =

ΣabB
A χab for someχab, which follows from the Bianchi identity involvingQA,QB ,Da .
Not all the identities listed were used in deriving the above equations but they are all

useful in what follows in[2].
Now writing

Γ aABDa = 1
2(QAQB +QBQA),

and applying it toψB , using the above equations for each derivation byQA orQB , and the
identityΣabA

B Γ BC
b = +9Γ aAC, we find the superfield Dirac equation:

Γ aABDaψ
B = 0.

Finally, applyingΓ AC
b QC to this equation and using the first two of the above equations

along with several of the identities we find the superfield Yang–Mills equations:

DaFab + 1
2ΓbAB[ψA,ψB ] = 0.

Simple reduction (i.e. “setting the Fermionic coordinates to zero”) gives the field equations.
This completes Harnad and Shnider’s summary of Witten’s derivation of the superfield

equations from the constraints. We note that the argument has been applied to the non-flat
case we are studying. We also follow Harnad and Shnider’s derivation that solutions to
thed = 10, N = 1 supersymmetric Yang–Mills field equations correspond to connections
integrable along super light rays, with some modification for the non-flat case we are
studying.

Define in local coordinates, the transverse Euler vector field,D = θA∂A, andD̂ = θAqA.
Note that the eigenfunctions ofDare superfields that are homogeneous in theθA coordinates
and that the eigenvalues are just the order of homogeneity. Also note thatD differs fromD̂
by an operator,U = θAXaA∂a , which when applied to a superfield, increases the order of
nilpotency by 2. In what follows we wish to consider superconnections that satisfy:

θAωA = 0.

A gauge may always be chosen so that such a condition is satisfied.
Using this gauge condition andEqs. (1)–(4)we find thatD̂ acts on the superconnection,

the spinor superfieldψB and curvature superfieldFab in the following manner:

(1 + D̂)ωB = 2θAΓ aABωa, D̂ωa = −θAΓaABψ
B, D̂ψB = +1

2θ
AΣabB

A Fab,

D̂Fab = θAΓaABDbψ
B − θAΓbABDaψ

B.

and thus forD,

(1 +D)ωB = 2θAΓ aABωa + UωB, Dωa = −θAΓaABψ
B + Uωa,

DψB = +1
2θ
AΣabB

A Fab + UψB, DFab = θAΓaABDbψ
B − θAΓbABDaψ

B + UFab.

If we are given a solution to thed = 10,N = 1 SSYM field equations, i.e. fields(ω0a, ψ
B
0 ),

which do not involve Fermionic (odd) coordinates, then this last set of equations can serve
to define superfields(ωa, ωA,ψB) which have(ω0a, ψ

B
0 ) as leading components.
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Having generated superfields from a solution to the field equations we wish to show
the superfields are solutions to the superfield equations. We proceed by induction on the
homogeneity in theθA coordinates. We have given a solution to the field equations:

Γ aABDaψ
B = 0,

and

DaFab + 1
2ΓbAB[ψA,ψB ] = 0

to order 0. Assume that these equations are true to ordern. We will show they are true to
ordern+ 1 by applyingD. First the super Dirac equation.

DΓ aABDaψ
B = D̂Γ aABDaψ

B + UΓ aABDaψ
B.

By the induction hypothesis we have

DΓ aABDaψ
B = D̂Γ aABDaψ

B.

Using the equations for the action ofD̂ on our superfields we have

DΓ aABDaψ
B = −θCΓ aABΓaCD[ψD,ψB ] + 1

2θ
CΓ aABΣ

cdB
C DaFcd

= θC(−Γ aACD
cFca + 1

2Γ
a
ABΣ

cdB
C DaFcd) = 0,

where in the second line we have used the induction hypothesis that the super Yang–Mills
field equation is true to ordern and in the last step we used the Gamma matrix identity,

Γ cABΣ
abB
C + Γ cBCΣ

abB
A = −2ηcbΓ aAC + 2ηcaΓ bAC,

and the Bianchi identity forFcd.
Similarly, we applyD to the super Yang–Mills equation to ordern+ 1.

D(DaFab + 1
2ΓbAB[ψA,ψB ])= D̂(DaFab + 1

2ΓbAB[ψA,ψB ])

+U(DaFab + 1
2ΓbAB[ψA,ψB ]).

By the induction hypothesis we have

D(DaFab + 1
2ΓbAB[ψA,ψB ]) = D̂(DaFab + 1

2ΓbAB[ψA,ψB ]).

Proceeding as before, using theD̂-equations and the induction hypothesis we have

D(DaFab + 1
2ΓbAB[ψA,ψB ])

= −Γ aCBθ
C [ψB, Fab] + θCDa(ΓaCBDbψ

B − ΓbCBDaψ
B)

+ 1
2θ
CΓbABΣ

cdA
C [Fcd, ψ

B ] = −Γ aCBθ
C([θB, Fab] + Γ aCB[Fab, ψ

B ]

+ 1
2ΓbCAΣ

cdA
B [Fcd, ψ

B ] + 1
2ΓbABΣ

cdA
C [Fcd, ψ

B ]) = 0.

In the induction step we have used the super Dirac equation (to ordern) and its consequence:

DaDaψ
B = −1

2Σ
abB
C [Fab, ψ

C ].
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This completes Harnad and Shnider’s inductive proof (with our modification, namely the use
of D̂), that the solutions to the field equations generate solutions to the superfield equations.
We now follow Harnad and Shnider’s derivation that the superfield equations imply Eqs.
(2)–(4).

Again using induction on the order of an expansion in theθA-coordinates, we first consider
the zeroth-order:

[QA,Da ]0 =
(
∂

∂θA
(ωa)

)
0
.

Since

Dωa = (D̂− U)ωa,
where we recall thatU is of order 2, we have

ωa = −θDΓaDCψ
C
0

to terms of order 1. Hence,

[QA,Da ]0 = −ΓaACψ
C
0 .

Similarly,

[QA,ψ
B ]0 = ∂

∂θA

(
1

2
θCΣabB

C F0ab

)
= 1

2
ΣabB
A F0ab.

Thus,Eqs. (2) and (3)hold at the zeroth-order. (Eq. (4)follows fromEq. (2)by taking even
covariant derivatives.)

We now assumeEqs. (2) and (3)to be true to ordern in θA and apply 1+D to Eqs. (2)
and (3)at ordern+ 1. First,Eq. (2):

(1 +D)([QA,Da ] + ΓaABψ
B) = (1 + D̂+ U)([QA,Da ] + ΓaABψ

B)

= (1 + D̂)([QA,Da ] + ΓaABψ
B)

= (2θCΓ bAC[Db,Da ] + θCQA(ΓaCBψ
B)+ 1

2ΓaABθ
CΣcdB

C Fcd

= θC(2Γ bABFba + 1
2ΓaCBΣ

cdB
A Fcd + 1

2ΓaABΣ
cdB
C Fcd) = 0,

where we have used the induction hypothesis to ordern and the Gamma identity:

Γ cABΣ
abB
C + Γ cBCΣ

abB
A = −2ηcbΓ aAC + 2ηcaΓ bAC.

Applying 1+D to both sides ofEq. (3), we have to ordern+ 1,

(1 +D)(QAψB − 1
2Σ

abB
A Fab) = (1 + D̂+ U)(QAψB − 1

2Σ
abB
A Fab)

= (1 + D̂)(QAψB − 1
2Σ

abB
A Fab)

= 2θCΓ aACDaψ
B − 1

2θ
CΣabB

C QAFab −ΣabB
A θCΓaCDDbψ

B

= 2θC(Γ aACDaψ
B −ΣabB

C ΓaADDbψ
D −ΣabB

A ΓaCDDbψ
D)

= 2θCΓ aACDaψ
B + θC(Γ bBEΓ aEAΓaCD + Γ bBEΓ aECΓaAD)Dbψ

D

= 2θCΓ aACDaψ
D − θC(Γ bBEΓ aEDΓaAC)Dbψ

D = 0,
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where we have used the Gamma identities

Γ aABΓaCD + Γ aACΓaBD + Γ aADΓaBC = 0, Γ aABΓ bBC + Γ bABΓ aBC = 2ηabδAC,

and the super Dirac equation,

Γ aABDaψ
B = 0.

We now show that the superconnection constructed from theD-recursion relations satisfies
the constraint for integrability along super light rays,Eq. (1), by applying(2 + D̂):

(2 + D̂)([QA,QB ] − 2Γ aABDa)

= 2[QA,QB ] + [2θCΓ aACDa,QB ] + [QA,2θ
CΓ aBCDa ] − [QA,QB ] − 4Γ aABDa

+ 2Γ aABθ
CΓaCDψ

D = 2θCΓ aACΓbBDψ
C + 2θCΓ aBCΓaADψ

D

+ 2θCΓ aABΓbCDψ
D = 0,

where we have usedEq. (2)and the Gamma identity,

Γ aABΓaCD + Γ aACΓaBD + Γ aADΓaBC = 0.

ThusEq. (1)holds.This completes the demonstration of Harnad and Shnider[2]
Dimensional reduction to four dimensions produces as a corollary the equivalence of the

field equations for thed = 4,N = 4 Yang–Mills theory and integrability along super light
rays (in 4|16 dimensions) with the added constraint

εαβ [Qαi,Qβj ] = 1
2εijkl ε

α̇β̇ [Qkα̇,Q
l

β̇
]

on our connection,(Dαα̇,Qβj ,Qkβ̇).

Again we shall follow Harnad and Shnider[2] in deriving this.
Recall that we are considering 10-dimensional spaces of the formM4 × M6, whereM4

is four-dimensional complex conformal manifold andM6 is six-dimensional Minkowski
space. Local coordinates are given by(xαα̇, y ij ), whereα, α̇ = 0,1, i, j = 1,2,3,4 and
y ij is anti-symmetric ini andj . Given this decomposition, we can write a 10-dimensional
spinor as

sA = (sαi, sjα̇),
and a connection as

Qαi = qαi + ωαi, Q
j
α̇ = qjα̇ + ωjα̇, Dαα̇ = ∂αα̇ + Aαα̇, Dij = ∂ij +Wij .

The constraint equation [QA,QB ] = Γ aABDa , becomes

[Qαi,Q
j
α̇] = 2δji Dαα̇, [Qαi,Qβj ] = 2εαβDij , [Qiα̇,Q

j

β̇
] = εα̇β̇ε ijklDkl.

For the spinor superfieldψB , define (using this decomposition):

χα̇i = 1
2εα̇β̇ψ

β̇
i , χiα = 1

2εαβψ
βi.
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Also, define

[Dαα̇,Dββ̇ ] = εαβfα̇β̇ + εα̇β̇fαβ, [Dαα̇,Dij ] = Fαα̇,ij , [Dij ,Dkl] = Fij ,kl.

Thed = 10,N = 1 super Dirac field equation

Γ aABDaψ
B = 0

in this notation becomes

εαβDαβ̇χ
i
β + 1

2ε
ijklDklχβ̇j = 0, εα̇β̇Dαα̇χβ̇i +Dijχ

j
α = 0,

and thed = 10,N = 1 super Yang–Mills equation,

DaFab + 1
2ΓbAB[ψa,ψB ] = 0

becomes

εα̇β̇Dγ α̇fβ̇γ̇ + εαβDαγ̇ fβγ + 1
4ε

ijklDklFγ γ̇ ,ij + [χiγ , χγ̇ i ] = 0,

εαβεα̇β̇Dαα̇Fββ̇,ij − 1
2ε

mnklDmnFkl,ij + 1
2ε
αβεijkl [χ

k
α, χ

l
β ] + εα̇β̇ [χα̇i, χβ̇j ] = 0.

If we assume that our connection comes about as a pull back of a connection on our
four-dimensional space,M4|16, then our fields and superfields are also pull backs of fields
and superfields onM4|16. The action of the following operators on any of these fields or
superfields is given by

Dij → [Wij , ], Fαβ̇,ij → Dαβ̇Wij , Fij ,kl → [Wij ,Wkl].

The super Dirac equation then becomes:

εαβDαβ̇χ
i
β + 1

2ε
ijkl [Wkl, χβ̇j ] = 0, εα̇β̇Dαα̇χβ̇i + [Wij , χ

j
α ] = 0,

and the super Yang–Mills equation becomes:

εα̇β̇Dγ α̇fβ̇γ̇ + εαβDαγ̇ fβγ + 1
4ε

ijkl [Wkl,Dγ γ̇Wij ] + [χiγ , χγ̇ i ] = 0,

εαβεα̇β̇Dαα̇Dββ̇Wij − 1
2ε

mnkl[Wmn, [Wkl,Wij ]]

+ 1
2ε
αβεijkl [χ

k
α, χ

l
β ] + εα̇β̇ [χα̇i, χβ̇j ] = 0.

The constraint equation

[Qαi,Q
j
α̇] = δji Dαα̇

remains the same upon this dimensional reduction. The constraint equations

[Qαi,Qβj ] = 2εαβWij , [Qiα̇,Q
j

β̇
] = 2εα̇β̇ε

ijklWkl

are equivalent to the equations

[Qαi,Qβj ] + [Qβi,Qαj ] = 0, [Qiα̇,Q
j

β̇
] + [Qjα̇,Q

i

β̇
] = 0,

εαβ [Qαi,Qβj ] = 1
2εijkl ε

α̇β̇ [Qkα̇,Q
l

β̇
].
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We may defineWij = εαβ [Qαi,Qβj ] in order to show this equivalence. The last equation is a
constraint that arises because of dimensional reduction from 10 to four dimensions, whereas
the other three constraint equations are equivalent to integrability of our connection along
super light rays in our spaceM4|16.

5. The Ward correspondence

In this section we follow very closely along the lines of McHugh[6]. Let M4 be a
geodesically convex complex conformal space–time and letM6 be complex Minkowski
space. LetΛ = M4×M6. The space–timeM4 has a canonical extension to a superconformal
manifold,M4|16, which then can be embedded in theD = 10,N = 1 superconformal
structure,Λ10|16, which has a space of super light rays,N17|8. We thus have the following
double fibration of supermanifolds:

LetQ8, be the eight-dimensional quadric, i.e. the space of null directions inC10. For each
[v] ∈ Q8, letE = coker (Γv : S16 → S16), whereΓv is the 10-dimensional gamma matrix
contracted withv. E is an eight-dimensional bundle overQ8. If Q is the image underρ
of a fiber ofπ then the normal bundle ofQ in N17|8 is ν0 ⊕ ν1, whereν0 is the normal
bundle ofQ in Nrd17 andν1 is (N2/N)|Q. By the results of Lebrun[3] ν0=T P9|Q8 ⊗ H∗
andν1 = (T1Λ10|16)/(ker(ρ))1 = S16/ker(Γv : S16 → S16). On the other hand ifQ is a
quadricQ8 in N17|8 with normal bundleT P9|Q8 ⊗ H∗ ⊕ E then the normal bundle ofQ
in N17|8 is ν0 ⊕ ν1, whereν0 is the normal bundle ofQ in Nrd17 andν1 is (N2/N)|Q.Q is
the image underρ of a fiber ofπ . We thus have the following.

Lemma. Let Q be the image underρ of a fiber ofπ . The normal bundle of Q inN17|8, is
T P9|Q8 ⊗ H∗ ⊕ E, whereH is the canonical line bundle onT P9. Furthermore if Q is a
quadricQ8 in N17|8 with normal bundleT P9|Q8 ⊗ H∗ ⊕E then Q is the image underρ of
a fiber ofπ .

We refer to suchQ as normal embedded quadrics.
We shall follow Manin[5, pp. 73–74], and LeBrun[4, p. 1053]in showing the equivalence

of connections with zero monodromy along any null line which are integrable along super
light rays and vector bundles over the space of super light rays which are trivial when
restricted to normal quadrics (see also[9]).

Assume the fibers ofρ, i.e. the super light rays ofΛ10|16, are connected. Let(EΛ,∇)
be a vector bundle with connection onΛ, which is integrable along super light rays and
which has zero monodromy along these fibers. LetTF/N = ker(ρ∗) and let∇F/N be the
composition

π∗EΛ
π∗∇→ π∗EΛ ⊗ π∗Ω1Λ

id⊗res→ Ω1F/N,
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where res is the restriction toTF/N. DefineE′F ≡ ker(∇F/N). Since∇F/N has no curvature
or monodromy and the fibers ofρ are connected, we have thatEN = ρ∗E′F is a locally free
sheaf onN. Furthermore, this sheaf will be trivial when restricted to normal quadrics.

In order to show that a locally free sheaf on the space of super light rays,N, which is
trivial when restricted to normal quadrics gives rise to a vector bundle with connection on
Λ, consider the short exact sequence of sheaves onF :

0 → µ→ π∗Ω1Λ→ Ω1F/N→ 0,

where res is the map fromπ∗Ω1Λ toΩ1F/N andµ is the kernel of that map. Over a small
open setU in Λ we have the long exact sequence ofAU×Q8 modules:

0→H 0(U ×Q8, µ)→ H 0(U ×Q8, π
∗Ω1Λ)→ H 0(U ×Q8,Ω

1F/N )

→H 1(U ×Q8, µ)→ H 1(U ×Q8, π
∗Ω1Λ)→ 0.

AssumingΩ1Λ is trivial overU we have that the last term,H 1(U ×Q8, π
∗Ω1Λ) is 0.

We now show that res induces an injective map betweenH 0(U × Q8, π
∗Ω1Λ) and

H 0(U × Q8,Ω
1F/N) and thusH 0(U × Q8, µ) = 0. Letωa,dθA be a local frame of

H 0(U × Q8, π
∗Ω1Λ) and letQA = ζaΓ

aABqB,D = ζ a(∂/∂xa) + ζ aRba(∂/∂ζ b) span
ker(d(ξaωa) : TF → Ω1F). HereRba are the coefficients of∂/∂ζ b in D which we will not
need to compute explicitly and

qB = gCB
(
qC − ξd∂bXdC

∂

∂ξb

)
, ζa = habξb and ζ a = ηabζb.

Let

χaω
a + λAg−1A

C dθC

be an arbitrary section ofH 0(U × Q8, π
∗Ω1Λ). (HereλA is an arbitrary spinor.) We have

(χaω
a + λAg−1A

C dθC) D = ζ aχa.
This will be zero for all nullζ a , only if χa is zero.

Also

(χaω
a + λAg−1A

C dθC) QB = λBζaΓ aBA.

If we chooseζa so thatζaρa �= 0, whereρa = λAλBΓ
aAB thenλBζaΓ aBA will be zero

only if λB = 0. Thus the the map, res, is injective andH 0(U ×Q8, µ) = 0.
We now have the short exact sequence

0 → H 0(U ×Q8, π
∗Ω1Λ)→ H 0(U ×Q8,Ω

1F/N)→ H 1(U ×Q8, µ)→ 0

of AU×Q8-modules and thus the short exact sequence of locally free sheaves

0 → Ω1Λ→ π0
∗Ω

1F/N→ π1
∗µ→ 0

onΛ. (AU×Q8 is the sheaf of superfunctions onU ×Q8.)
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We may consider a neighborhood ofΛ,U, in which this short exact sequence splits:

π∗0Ω
1F/N = Ω1Λ⊕ π1

∗µ,

and we thus have a projection map (overU),

proj : π0
∗Ω

1F/N→ Ω1Λ.

Given a super vector bundle,EN, on the space of super light rays,N, which is trivial when
restricted to normal embedded quadrics, defineEΛ = π0∗ (ρ∗(EN)), we follow LeBrun[4]
in defining a connection onEU. Let

dρ : EU → EU ⊗ π0
∗ (Ω

1F/N )

be differentiation along the fibers ofρ. We then consider the composition of this map with
our projection map, proj,

EU → EU ⊗ π0
∗ (Ω

1F/N)→ EU ⊗Ω1U.

This is a superconnection which is integrable along the super light rays.
To obtain a Ward correspondence betweenΛ and its space of super light rays, we will

piece together Ward transforms between open sets,U and the image of open setsU inN. In
the constructions given, a gauge transformation of the vector bundle and connection over the
10-dimensional space,U, corresponds to a gauge transformation of the twistor transform
over the space of super light rays. The same is true on the intersection of two such sets,
namely,Uα∩Uβ . We use the correspondence of gauge transformations onUα∩Uβ to piece
together Ward correspondences over each of the open setsUα to get a Ward correspondence
overΛ.

Recall that a complex conformal space–time is said to be civilized if its space of null
geodesics is a complex manifold. A complex conformal space–time is reflexive if it is the
space of normal quadrics for its space of null geodesics. LetM4 be a civilized and reflexive
complex conformal space–time and letM6 be complex Minkowski space. We thus state the
main theorem of this article:

Theorem. LetΛ = M4 × M6, whereM4 is a complex conformal space–time andM6 is
complex Minkowski space. There is then a one-to-one correspondence between

1) solutions to the field equations ford = 10,N = 1 supersymmetric Yang–Mills theory
with no monodromy on any null line l, and

2) vector bundles over the space of super light rays,N17|8, which are trivial when restricted
to normal embedded quadrics, i.e. quadrics, Q(p), which are the space of super light
rays passing through a point, p inΛ.
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